9 research outputs found

    Genetic loci of Staphylococcus aureus associated with anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides

    Get PDF
    The proteinase 3 (PR3)-positive anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) granulomatosis with polyangiitis (GPA) has been associated with chronic nasal S. aureus carriage, which is a risk factor for disease relapse. The present study was aimed at comparing the genetic make-up of S. aureus isolates from PR3-ANCA-positive GPA patients with that of isolates from patients suffering from myeloperoxidase (MPO)-ANCA-positive AAV, and isolates from healthy controls. Based on a DNA microarray-based approach, we show that not only PR3-ANCA-positive GPA patients, but also MPO-ANCA-positive AAV patients mainly carried S. aureus types that are prevalent in the general population. Nonetheless, our data suggests that MPO-ANCA-associated S. aureus isolates may be distinct from healthy control- and PR3-ANCA-associated isolates. Furthermore, several genetic loci of S. aureus are associated with either PR3-ANCA- or MPO-ANCA-positive AAV, indicating a possible role for pore-forming toxins, such as leukocidins, in PR3-ANCA-positive GPA. Contrary to previous studies, no association between AAV and superantigens was detected. Our findings also show that a lowered humoral immune response to S. aureus is common for PR3-ANCA- and MPO-ANCA-positive AAV. Altogether, our observations imply that the presence or absence of particular virulence genes of S. aureus isolates from AAV patients contributes to disease progression and/or relapse

    Characterization of K-Complexes and Slow Wave Activity in a Neural Mass Model

    Get PDF
    NREM sleep is characterized by two hallmarks, namely K-complexes (KCs) during sleep stage N2 and cortical slow oscillations (SOs) during sleep stage N3. While the underlying dynamics on the neuronal level is well known and can be easily measured, the resulting behavior on the macroscopic population level remains unclear. On the basis of an extended neural mass model of the cortex, we suggest a new interpretation of the mechanisms responsible for the generation of KCs and SOs. As the cortex transitions from wake to deep sleep, in our model it approaches an oscillatory regime via a Hopf bifurcation. Importantly, there is a canard phenomenon arising from a homoclinic bifurcation, whose orbit determines the shape of large amplitude SOs. A KC corresponds to a single excursion along the homoclinic orbit, while SOs are noise-driven oscillations around a stable focus. The model generates both time series and spectra that strikingly resemble real electroencephalogram data and points out possible differences between the different stages of natural sleep

    A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation

    Get PDF
    Few models exist that accurately reproduce the complex rhythms of the thalamocortical system that are apparent in measured scalp EEG and at the same time, are suitable for large-scale simulations of brain activity. Here, we present a neural mass model of the thalamocortical system during natural non-REM sleep, which is able to generate fast sleep spindles (12–15 Hz), slow oscillations (<1 Hz) and K-complexes, as well as their distinct temporal relations, and response to auditory stimuli. We show that with the inclusion of detailed calcium currents, the thalamic neural mass model is able to generate different firing modes, and validate the model with EEG-data from a recent sleep study in humans, where closed-loop auditory stimulation was applied. The model output relates directly to the EEG, which makes it a useful basis to develop new stimulation protocols

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Genetic loci of Staphylococcus aureus associated with anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides

    Get PDF
    Abstract The proteinase 3 (PR3)-positive anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) granulomatosis with polyangiitis (GPA) has been associated with chronic nasal S. aureus carriage, which is a risk factor for disease relapse. The present study was aimed at comparing the genetic make-up of S. aureus isolates from PR3-ANCA-positive GPA patients with that of isolates from patients suffering from myeloperoxidase (MPO)-ANCA-positive AAV, and isolates from healthy controls. Based on a DNA microarray-based approach, we show that not only PR3-ANCA-positive GPA patients, but also MPO-ANCA-positive AAV patients mainly carried S. aureus types that are prevalent in the general population. Nonetheless, our data suggests that MPO-ANCA-associated S. aureus isolates may be distinct from healthy control- and PR3-ANCA-associated isolates. Furthermore, several genetic loci of S. aureus are associated with either PR3-ANCA- or MPO-ANCA-positive AAV, indicating a possible role for pore-forming toxins, such as leukocidins, in PR3-ANCA-positive GPA. Contrary to previous studies, no association between AAV and superantigens was detected. Our findings also show that a lowered humoral immune response to S. aureus is common for PR3-ANCA- and MPO-ANCA-positive AAV. Altogether, our observations imply that the presence or absence of particular virulence genes of S. aureus isolates from AAV patients contributes to disease progression and/or relapse

    Importance of Baseline Prognostic Factors With Increasing Time Since Initiation of Highly Active Antiretroviral Therapy: Collaborative Analysis of Cohorts of HIV-1-Infected Patients

    No full text
    Background: The extent to which the prognosis for AIDS and death of patients initiating highly active antiretroviral therapy (HAART) continues to be affected by their characteristics at the time of initiation (baseline) is unclear. Methods: We analyzed data on 20,379 treatment-naive HIV-1- infected adults who started HAART in 1 of 12 cohort studies in Europe and North America (61,798 person-years of follow-up, 1844 AIDS events, and 1005 deaths). Results: Although baseline CD4 cell count became less prognostic with time, individuals with a baseline CD4 count 350 cells/μL (hazard ratio for AIDS = 2.3, 95% confidence interval [CI]: 1.0 to 2.3; mortality hazard ratio = 2.5, 95% CI: 1.2 to 5.5, 4 to 6 years after starting HAART). Rates of AIDS were persistently higher in individuals who had experienced an AIDS event before starting HAART. Individuals with presumed transmission by means of injection drug use experienced substantially higher rates of AIDS and death than other individuals throughout follow-up (AIDS hazard ratio = 1.6, 95% CI: 0.8 to 3.0; mortality hazard ratio = 3.5, 95% CI: 2.2 to 5.5, 4 to 6 years after starting HAART). Conclusions: Compared with other patient groups, injection drug users and patients with advanced immunodeficiency at baseline experience substantially increased rates of AIDS and death up to 6 years after starting HAART

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p
    corecore